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The use of nonenzymatic catalysts for asymmetric acylations of Table 1. Enantioselective Acylation of 1,3-Propanediol 42
racemic alcohols, that is, kinetic resolutions, using chiral nucleo-

Ar Ar

philic catalysis has recently proved to be quite interestitgOn AEEOH oH HOEF
the other hand, use of these methods for desymmetrizing meso diols N N Ar Ph
has been much less examined. An excellent result occurred in one 1 2; A:; _@_Ph
case with meso-1,3-bisthydroxyethyl)benzene using planar chiral
catalyst£? With a chiral diamine as an acyl transfer catalyst, meso- entry ligand® temp time yield 5¢ ce5
1_,2-d|ols have been de_symmetrlzed with gqod ylelds_and selectivi- 1 1a n 20h 85% 74%
ties; however, 2-substituted-1,3-propanediols constitute a greater 2 1b rt 20 h 98% 83%
challenge because of the remoteness of the prostereogenic center 3 1b rt 5h 88% 84%
to the hydroxyl groups and led to high ee’s only if the monoacylated 4 1b —10°C 20h 99% 87%

. 2 . 5 1b —15°C 24h 94% 91%
product was subjected to further kinetic resolution to form the meso ¢ 1b —20°C 24 h 77% 95%
diester thereby limiting the efficiend/While enzymatic methods 7 1b —40°C 120 h trace n.d.

are highly successful in desymmetrizing meso diélsjixed results
_ ; 1 2. a All reactions were performed using 5 mol % 10 mol %2, and 5
are reported for the_case Of_ 2-substituted-1,3-propaneffiols. . equiv of 3 in toluene at 0.1 M except as indicated elsewhetdgand 1a,
The nonenzymatic reactions have the advantage that eitherar = ph; ligandib, Ar = —CgHs—Ph—p. ¢ Isolated yield of monobenzoate.
enantiomer of the catalyst normally would be equally accessible, Dibenzﬁjaze was f?rmed iﬂ(lj% yieI((:ij ((entries %)ar;d 4), 1% yield (en't1ry 2),
; ; ; 5% yield (entry 3), or not detected (entries B). 9 Reaction run with 10
thereby allowing a(_:cess to poth enantlorper_s of the product in the mol % 1, 20 mol %2, and 10 equiv oB.
same process by simply switching the chirality of the catalyst. Our Increasing the si f the chiral ket b itching froen Ar
development of a novel dinuclear zinc complex formed from phenol creasing the size of the chiral pocket by switching Tribe

_ b o .
1 and diethylzinc 8) for asymmetric aldol reactiohsaised the phenyl, tolb, Ar = 4-biphenylyl; |ncrgased both yield and ee
question of how “enzyme-like” this catalyst might behave. Zinc as (entry 1 vs 2). On the other hand, doubling the amount of catalyst

. . ) . . and vinyl benzoate was somewhat deleterious to yield because small
a cofactor in enzymatic reactions is well known. Its ability to

. ) L amounts of dibenzoate were now isolated (entry 2 vs 3). Lowering
function as both a base and an acid suggested that it might catalyzeThe temperature increased the ee to a maximum of 95% (entries

asymmetric acylations by a different type of mechanism than the 4_g) Attempts to lower the temperature further led to too slow of
previously reported chiral transacylation catalysts. a reaction. These results compare favorably with the best ee of
Initial work examined the desymmetrization@é-cyclohexane- 92% reported for an enzymatic desymmetrizafioiihe absolute
1,2-diol with various acylating agents including isopropenyl acetate, configuration was assigned by comparison to a known satfiple.
vinyl acetate, acetic anhydride, acetyl chloride, vinyl benzoate, and  with these results in hand, we examined a range of 2-arylpro-
benzoic anhydride. Modest yields of the monoesters were obtained.pane-1,3-diols as summarized in eq 2 and Table 2.
Only in the case of acetyl chloride was an appreciable amount of
diacetate formed. However, in all cases, the product was racemic. OH ﬁ\ Qa2 y—OCOPh
. . . . L l’_<: + 2N hCHs ’)<: @
Indeed, the enantiomerically enriched monoester of this diol is OH 0" "Ph 15 Ar
rapidly racemized under the reaction conditions.
Switching to a conformationally flexible 1,3-diol should help Substrates bearing election-rich benzenoid rings in entries 1
minimize product racemization by intramolecular acyl transfer. We, react readily under the standard conditions to give excellent yields
therefore, turned to the difficult case of 2-substituted-propane-1,3- and ee’s. Typically, dibenzoates were not detected. On the other
diols. Using vinyl acetate as the acyl transfer agent led to significant and, introduction of an electron-withdrawing group as in entries
diacetylation (58%). On the other hand, vinyl benzoate reacted 4 and 5 led to slower reactions as reflected in the lower isolated

smoothly as shown in eq 1 using the complex derived fi@rAr yields which reflects lower conversions using 5 mol % catalyst.
= Ph) to give the monobenzo&té° as summarized in Table 1 The lower ee’s in this case may arise from some racemization of
the product. Increasing the catalyst loading to 10 mol % restores

the yield and ee. The naphthalene examples (entries 6 and 7)

OH

F>h_<:OH . é\oﬁ\Ph (CQHZ;E:'&) H, OCOPh illustrate the impact of molecular shape on chiral recognition. The
OH —— Ph,'<: ) 2-naphthyl substrate gives exgellent yield and ee. On the other hand,
4 3 OH the placement of the benzo ring close to the two hydroxymethyl
5 groups in the case of the 1-naphthyl substrate obviously disrupts

the chiral recognition, although the reactivity is quite good. The
Dibenzoate typically formed ix1% yield. Thus, the ee’s are not  sterically smaller thiophene leads to lower chiral recognition as
the result of a kinetic resolution of the initial monobenzoate. compared to the benzenoid aromatics.
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Table 2. Enantioselective Acylation of 2-Arylpropane-1,3-diols@ SAM Il gave 44% vyield of monoacetate with only 7% ®€lhis
Entry Ar Mol% cat Time  Yield” eet compound proved useful in the syntheses of antiviral agénts.
Figure 1 depicts a proposed catalytic cycle. Coordination of the
l @-g 5 24h 94% 91%" vinyl benzoate away from the diarylcarbinol unit of the prolinol
2 oy P 24h 98% 91% foIIow_ed by ary! shift to the alkoxuj_e oxygen then e_tcc_ounts _for the
3 @ enantioselectivity. Thus, the two diarylcarbinol moieties define the
3 omo-@—é 5 24h 99% 93% chiral space responsible for the molecular recognition. It is
4 0 . 29% 90% noteworthy that this simple catalyst performs comparable to if not
C"@'ﬁ 5 24h 70(,/2 83%2 better than the corresponding enzymatic catalyst for similar
5 10 18h 83% 86% substrates. The reactions typically require quite reasonable reaction
1% 24h 48% 83% conditions of 18-24 h at—15 to—20 °C. This catalyst represents
6 18h 99% 59% fai ; F ;
5 30h 3% 38% a very promising design for desymmetrizing meso diols.
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using heptane 2-propanol mixturesd Reference 11. characterization data for monobenzoates of Table 2, eq 3, and eq 4
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